3D ACOUSTIC SHAPE SENSITIVITY ANALYSIS USING FAST MULTIPOLE BOUNDARY ELEMENT METHOD
نویسندگان
چکیده
منابع مشابه
A fast multipole boundary element method for 2D viscoelastic problems
A fast multipole formulation for 2D linear viscoelastic problems is presented in this paper by incorporating the elastic–viscoelastic correspondence principle. Systems of multipole expansion equations are formed and solved analytically in Laplace transform domain. Three commonly used viscoelastic models are introduced to characterize the time-dependent behavior of the materials. Since the trans...
متن کاملParallel Fast Multipole Boundary Element Method for Crustal Dynamics
Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Eleme...
متن کاملA low-frequency fast multipole boundary element method based on analytical integration of the hypersingular integral for 3D acoustic problems
A low-frequency fast multipole boundary element method (FMBEM) for 3D acoustic problems is proposed in this paper. The FMBEM adopts the explicit integration of the hypersingular integral in the dual boundary integral equation (BIE) formulation which was developed recently by Matsumoto, Zheng et al. for boundary discretization with constant element. This explicit integration formulation is analy...
متن کاملFast multipole acceleration of the MEG/EEG boundary element method.
The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electroencephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but cannot be used for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the sym...
متن کاملFast Multipole Boundary Element Method of Potential Problems
In order to overcome the difficulties of low computational efficiency and high memory requirement in the conventional boundary element method for solving large-scale potential problems, a fast multipole boundary element method for the problems of Laplace equation is presented. through the multipole expansion and local expansion for the basic solution of the kernel function of the Laplace equati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Methods
سال: 2012
ISSN: 0219-8762,1793-6969
DOI: 10.1142/s021987621240004x